Fengnian Xia
![Fengnian Xia Fengnian Xia](https://seas.yale.edu/sites/default/files/imagecache/person/xia-web.jpg)
Website:
Xia Research GroupTso-Ping Ma Professor of Electrical & Computer Engineering
Room / Office: Becton 519
Office Address:
15 Prospect Street
New Haven, CT
06511
Mailing Address:
P.O. Box 208284
New Haven, CT
06520
Phone: (203) 432-7271
Email: fengnian.xia@yale.edu
Degrees:
- Ph.D., Princeton University
- B.S., Tsinghua University, China
Interests:
Light-matter interaction and photonic devices; carrier transport and electronic devices; device applications in imaging, communications, and electronics; integration of emerging and traditional materials.
Selected Awards & Honors:
- 2024: Tso-Ping Ma Endowed Chair, Yale University
- 2023: Fellow of American Physical Society (APS)
- 2022: Fellow of Optica
- 2019: Presidential Early Career Award for Scientists and Engineers (PECASE)
- 2017-2023: Highly Cited Researcher, Clarivate Analytics
- 2016: National Science Foundation CAREER Award
- 2015: Barton L. Weller Endowed Chair, Yale University
- 2015: Office of Naval Research Young Investigator Program Awardee
- 2012: IBM Corporate Award (the highest technical prize by the CEO)
- 2011: TR35, MIT Technology Review's Top Young Innovator under 35
- 1998: Graduation with Highest Honor, Tsinghua University, Beijing, China
Selected Publications:
- M. Cai and F. Xia, “An all-silicon solution”, Nature Photonics 18, 890-891 (2024). (News & Views).
- M. Fortin-Deschênes, K. Watanabe, T. Taniguchi, and F. Xia, “Van der Waals epitaxy of tunable moirés enabled by alloying”, Nature Materials 23, 339-346 (2024).
- B. Deng and F. Xia, “Large-angle twist effect”, Nature Photonics 17, 1021–1022 (2023). (News & Views).
- M. Fortin-Deschênes and F. Xia, “Synthesis of black phosphorus films”, Nature Materials 22, 681–682 (2023). (News & Views).
- S. Yuan, C. Ma, E. Fetaya, T. Mueller, D. Naveh, F. Zhang, F. Xia, “Geometric deep optical sensing”, Science 379, eade1220 (2023).
- M. Fortin-Deschênes, R. Pu, Y.-F. Zhou, C. Ma, P. Cheung, K. Watanabe, T. Taniguchi, F. Zhang, X. Du, and F. Xia, “Uncovering topological edge states in twisted bilayer graphene”, Nano Letters 22, 6186-6193 (2022).
- M. Fortin-Deschênes and F. Xia, "A tale of two dimensionalities," Nature Materials 21, 735–736 (2022). (News and Views).
- C. Ma, S. Yuan, P. Cheung, K. Watanabe, T. Taniguchi, F. Zhang, and F. Xia, "Intelligent infrared sensing enabled by tunable moiré quantum geometry," Nature 604, 266-272 (2022).
- S. Yuan, D. Naveh, K. Watanabe, T. Taniguchi, and F. Xia, “A wavelength-scale black phosphorus spectrometer,” Nature Photonics 15, 601-607 (2021).
- B. Deng, C. Ma, Q. Wang, S. Yuan, K. Watanabe, T. Taniguchi, F. Zhang, and F. Xia, “Strong mid-infrared photoresponse in small-twist-angle bilayer graphene,” Nature Photonics 14, 549-553 (2020).
- J. Liu, F. Xia, D. Xiao, F. J. García de Abajo, and D. Sun, “Semimetals for high-performance photodetection,” Nature Materials 19, 830-837 (2020).
- C. Ma, Q. Wang, S. Mills, X. Chen, B. Deng, S. Yuan, C. Li, K. Watanabe, T. Taniguchi, X. Du, F. Zhang, and F. Xia, “Moiré band topology in twisted bilayer graphene,” Nano Letters 20, 6076-6083 (2020).
- Z. Dai, G. Hu, Q. Ou, L. Zhang, F. Xia, F. J Garcia-Vidal, C. Qiu, and Q. Bao, “Artificial metaphotonics born naturally in two dimensions,” Chemical Reviews 120, 6197-6246 (2020).
- C. Chen, X. Lu, B. Deng, X. Chen, Q. Guo, C. Li, C. Ma, S. Yuan, E. Sung, K. Watanabe, T. Taniguchi, L. Yang, and F. Xia, “Widely tunable mid-infrared light emission in thin-film black phosphorus,” Science Advances 6, eaay6134 (2020).
- F. Xia, H. Wang, J. C. M. Hwang, A. H. Castro Neto, and L. Yang, “Black phosphorus and its isoelectronic materials,” Nature Reviews Physics 1, 306-317 (2019).
- Q. Guo, R. Yu, C. Li, S. Yuan, B. Deng, F. J. García de Abajo, and F. Xia, “Efficient electrical detection of mid-infrared graphene plasmons at room temperature,” Nature Materials 17, 986-992 (2018).
- C. Li, Y. Wu, B. Deng, Y. Xie, Q. Guo, S. Yuan, X. Chen, M. Bhuiyan, Z. Wu, K. Watanabe, T. Taniguchi, H. Wang, J. Cha, M. Snure, Y. Fei, and F. Xia, “Synthesis of crystalline black phosphorus thin film on sapphire,” Advanced Materials 30, 1703748 (2018).
- X. Chen, X. Lu, B. Deng, O. Sinai, Y. Shao, C. Li, S. Yuan, V. Tran, K. Watanabe, T. Taniguchi, D. Naveh, L. Yang, and F. Xia, “Widely tunable black phosphorus mid-infrared photodetector,” Nature Communications 8, 1672 (2017).
- B. Deng, V. Tran, Y. Xie, H. Jiang, C. Li, Q. Guo, X. Wang, H. Tian, S. J. Koester, H. Wang, J. J. Cha, Q. Xia, L. Yang, and F. Xia, “Efficient electrical control of thin-film black phosphorus bandgap,” Nature Communications 8, 14474 (2017).
- Q. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. Deng, C. Li, S.-J. Han, H. Wang, Q. Xia, T.-P. Ma, T. Mueller, and F. Xia, "Black phosphorus mid-Infrared photodetectors with high gain," Nano Letters 16, 4648–4655 (2016).
- F. Xia, "Flat talk," Nature Photonics 10, 205-206 (2016). (Interview)
- X. Ling, H. Wang, S. Huang, F. Xia, and M. S. Dresselhaus, "The renaissance of black phosphorus," Proceedings of the National Academy of Sciences 112, 4523-4530 (2015).
- X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, and F. Xia, "Highly anisotropic and robust excitons in monolayer black phosphorus," Nature Nanotechnology 10, 517–521 (2015).
- X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. Menon, "Strong light–matter coupling in two-dimensional atomic crystals," Nature Photonics 9, 30-34 (2015).
- F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, "Two-dimensional material nanophotonics," Nature Photonics 8, 899-907 (2014).
- T. Low, R. Roldan, H. Wang, F. Xia, P. Avouris, L. Moreno, and F. Guinea, "Plasmons and screening in monolayer and multilayer black phosphorus," Physical Review Letters 113, 106802 (2014).
- F. Xia, H. Wang, and Y. Jia, "Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics," Nature Communications 5, 4458 (2014).
- W. Zhu, T. Low, Y.-H. Lee, H. Wang, D. Farmer, J. Kong, F. Xia, and P. Avouris, "Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapor deposition," Nature Communications 5, 3087 (2014).
- H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, "Damping pathways of mid-infrared plasmons in graphene nanostructures," Nature Photonics 7, 394-399 (2013).
- M. Freitag, T. Low, F. Xia, and P. Avouris, "Photoconductivity of biased graphene," Nature Photonics 7, 53-59 (2013).
- H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, "Tunable infrared plasmonic devices using graphene/insulator stacks," Nature Nanotechnology 7, 330-334 (2012).
- F. Xia, V. Perebeinos, Y. Lin, Y. Wu, and P. Avouris, "The origins and limits of metal-graphene junction resistance," Nature Nanotechnology 6, 179-184 (2011).
- Y. Wu, Y. Lin, A. Bol, K. Jenkins, F. Xia, D, Farmer, Y. Zhu, and P. Avouris, "High-frequency, scaled graphene transistors on diamond-like carbon," Nature 472, 74-78 (2011).
- T. Mueller, F. Xia, and P. Avouris, "Graphene photodetectors for high-speed optical communications," Nature Photonics 4, 297-301 (2010).
- S. Assefa, F. Xia, and Y. Vlasov, "Reinventing Germanium avalanche photodetector for on-chip optical interconnects," Nature 464, 80-84 (2010).
- F. Xia, D. Farmer, Y. Lin, and P. Avouris, "Graphene field-effect-transistors with high on/off current ratio and large transport bandgap at room temperature," Nano Letters 10, 715-718 (2010).
- F. Xia, T. Muller, Y. Lin, A. Valdes-Garcia, and P. Avouris, "Ultrafast graphene photodetector," Nature Nanotechnology 4, 839-843 (2009).
- F. Xia, L. Sekaric, and Y. Vlasov, "Ultra-compact optical buffers on a silicon chip," Nature Photonics 1, 65-71 (2007). (Cover story)
- F. Xia, V. Menon, and S. Forrest, "Photonic integration using asymmetric twin-waveguide (ATG) technology (I): concepts and theory," IEEE Journal of Selected Topics in Quantum Electronics 11, 17-29 (2005).
- V. Menon, F. Xia, and S. Forrest, "Photonic integration using asymmetric twin-waveguide (ATG) technology (II): devices," IEEE Journal of Selected Topics in Quantum Electronics 11, 30-42 (2005).
Selected Patents:
- 10,636,654: Wafer-scale synthesis of large-area black phosphorus material heterostructures
- 8,395,103: Avalanche impact ionization amplification devices
- 8,378,465: Method and apparatus for optical modulation
- 8,232,516: Avalanche impact ionization amplification devices
- 8,139,904: Method and apparatus for implementing optical deflection switching using coupled resonators
- 8,053,782: Single and few-layer graphene based photodetecting devices
- 7,999,344: Optoelectronic device with germanium photodetector
- 7,880,201: Optical modulator using a serpentine dielectric layer between silicon layers
- 7,790,495: Optoelectronic device with germanium photodetector
- 7,684,666: Method and apparatus for tuning an optical delay line
- 7,515,793: Waveguide photodetector
- 7,373,048: Polarization insensitive semiconductor optical amplifier
- 7,333,689: Photonic integrated devices having reduced absorption loss
- 6,795,622: Photonic integrated circuits