Diana Qiu

Diana Qiu


Qiu Group
Assistant Professor of Mechanical Engineering & Materials Science
Room / Office: Room 213
Office Address:
17 Hillhouse Avenue
New Haven, CT 06511
Mailing Address:
P.O. Box 208284
New Haven, CT 06520
Email: diana.qiu@yale.edu
  • Ph.D., University of California, Berkeley
  • B.Sc., Yale University


One of the grand challenges of materials research is the ability to engineer and tune quantum degrees of freedom in order to discover new properties and phenomena, as well as to harness the flow of energy, charge, and information. A frontier of this understanding and optimization, which is the central goal of my group, lies in the control of a material's excitations and macroscopic properties at the quantum level through the tuning of light-matter interactions and many-electron correlations. My group uses and develops first principles quantum physics methods, which exploit high-performance computing to calculate many-electron interaction effects and make quantitatively accurate predictions about real materials. We are interested in the discovery and design of novel, highly-tunable, and transient materials, as well as the exploration of fundamental processes, such as exciton transport and coherence, and nonlinear and ultrafast optical response in materials relevant to fields such as optoelectronics, quantum information, and energy research. Materials of interest include two-dimensional materials and heterostructures, material defects, hybrid perovskite, and topological materials, among many others.

Selected Awards & Honors:

  • 2021 DOE Early Career Research Program Award
  • Rising Stars in Physics, 2018
  • Jackson C. Koo Award in Condensed Matter Physics, 2017

Selected Publications:

     For a full list, visit Prof. Qiu's Google Scholar profile.


  • S.G. Louie, Y.-H. Chan, F.H. da Jornada, Z. Li, and D.Y. Qiu, "Discovering and understanding materials through computation", Nature Materials, 20, 728–735 (2021).
  • F. Tang, J. Xu, D.Y. Qiu, X. Wu, "Nuclear quantum effects on the quasiparticle properties of the chloride anion aqueous solution within the GW approximation," Phys. Rev. B, 104, 035117 (2021).
  • E. Mitterreiter, B. Schuler, A. Micevic, D. Hernangómez-Pérez, K. Barthelmi, K.A. Cochrane, J. Kiemle, F. Sigger, J. Klein, E. Wong, E.S. Barnard, K. Watanabe, T. Taniguchi, M. Lorke, F. Jahnke, J.J. Finley, A.M. Schwartzberg, S. Refaely-Abramson, D.Y. Qiu, A.W. Holleitner, A. Weber-Bargioni, C. Kastl, "The role of chalcogen vacancies for atomic defect emission in MoS2," Nature Communications, 12, 3822 (2021).
  • Y. H. Chan, D. Y. Qiu, F. H. da Jornada, and S. G. Louie, “Giant exciton-enhanced shift currents and direct current conduction with subbandgap photo excitations produced by many-electron interactions.” PNAS, 118 (2021).
  • H.M. Bretscher, Z. Li, J. Xiao, D.Y. Qiu, S. Refaely-Abramson, J. Alexander-Webber, A.O.A Tanoh, Y. Fan, G. Delport, C. Williams, S.D Stranks, S. Hofmann, J.B Neaton, S.G. Louie, A. Rao, "Rational Passivation of Sulfur Vacancy Defects in Two-Dimensional Transition Metal Dichalcogenides," ACS Nano, 15, 8780-8789 (2021).
  • S. Yazdani, J.V. Pondick, A. Kumar, M. Yarali, J.M. Woods, D.J. Hynek, D.Y. Qiu, J.J. Cha, "Heterointerface effects on lithium-induced phase transitions in intercalated MoS2," ACS Appl. Mater. Interfaces, 13, 10603 (2021).
  • S. Yoon, T. Kim, S. Seo, S.-H. Shin, S.-B. Song, B. J. Kim, K. Watanabe, T. Taniguchi, G.-H. Lee, M. Jo, D.Y. Qiu*, J. Kim* "Electrical control of anisotropic and tightly bound excitons in bilayer phosphorene," Physical Review B, 103, L041407 (2021).
  • D.Y. Qiu, F.H. da Jornada, and S. G. Louie, "Solving the Bethe-Salpeter equation on a subspace: Approximations and consequences for low-dimensional materials," Physical Review B, 103, 045117 (2021).
  • D.Y. Qiu, S. Coh, M.L. Cohen, and S. G. Louie, "Comparison of GW band structure to semiempirical approach for an FeSe monolayer," Physical Review B, 101, 235154 (2020).
  • S. Barja*, S. Refaely-Abramson*, B. Schuler*, D. Y. Qiu*, A. Pulkin, S. Wickenburg, H. Ryu, M. M. Ugeda, C. Kastl, C. Chen, C. Hwang, A. Schwartzberg, S. Aloni, S.-K. Mo, D. F. Ogletree, M. F. Crommie, O. Yazyev, S. G. Louie, J. B. Neaton, and A. Weber-Bargioni, “Chalcogen vacancies, substituted chalcogens and mid-gap states in 2D-Transition Metal Dichalcoginides.” Nature Communications (2019).
  • S. Refaely-Abramson*, D. Y. Qiu*, S. G. Louie, and J.B. Neaton, “Defect-induced modification of low-lying excitons and valley selectivity in monolayer transition metal dichalcogenides,” Physical Review Letters, 121, 167402 (2018).
  • G. Antonius, D. Y. Qiu, and S. G. Louie, “Orbital Symmetry and the Optical Response of Single-layer Monochalcogenides,” Nano Letters, 18, 1925-1929 (2018)
  • D. Y. Qiu, F. H. da Jornada, and S. G. Louie, “Environmental Screening Effects in 2D Materials: Renormalization of the Bandgap, Electronic Structure, and Optical Spectra of Few-Layer Black-Phosphorus,” Nano Letters, 17, 4706-4712 (2017).
  • F. H. da Jornada*, D. Y. Qiu*, and S. G. Louie, “Non-uniform sampling schemes of the Brillouin zone for many-electron perturbation-theory calculations in reduced dimensionality,” Physical Review B, 95, 035109 (2017).
  • L. Li, J. Kim, C. Jin, G. Ye, D. Y. Qiu, F. H. da Jornada, Z. Shi, L. Chen, Z. Zhang, F. Yang, K. Watanabe, T. Taniguchi, W. Ren, S. G Louie, X. Chen, Y. Zhang, and F. Wang, “Direct Observation of Layer-Dependent Electronic Structure in Phosphorene,” Nature Nanotechnology, 12, 21-25 (2017).
  • D. Y. Qiu, F. H. da Jornada, and S. G. Louie,” Screening and many-body effects in two-dimensional crystals: Monolayer MoS2,” Physical Review B, 93, 235435 (2016).
  • D. Y. Qiu, T. Cao, and S. G. Louie, “Nonanalyticity, valley quantum phases, and lightlike exciton dispersion in monolayer transition metal dichalcogenides: Theory and first-principles calculations,” Physical Review Letters, 115, 176801 (2015).
  • M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie , “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nature Materials, 13, 1091-1095 (2014).
  • D. Y. Qiu, F. H. da Jornada, and S. G. Louie, “Optical spectrum of MoS2: many-body effects and diversity of exciton states,” Physical Review Letters, 111, 216805 (2013).