Nanophotonic Interfaces to Control Plasmons and Spins

Time: Wednesday, March 2, 2022 - 1:00pm - 2:00pm
Type: Solid State and Optics Seminar
Presenter:
Room/Office:
Location:

Solid State & Optics Seminar Series

sponsored by "The Flint Fund Series on Quantum Devices and Nanostructures"

Wednesday, March 2, 2022
1:00 PM Via Zoom
Meeting ID: 947 2015 4098
Password: 604783

Dr. Laura Kim

"Nanophotonic Interfaces to Control Plasmons and Spins"

Light-matter interactions mediated by photonic quasiparticles play a crucial role in realizing next-generation photonic devices by unlocking phenomena that are not accessible with free-space photons and providing efficient interfaces for quantum systems. In the first part of the presentation, I will present the first experimental demonstration of a mid-infrared light-emitting mechanism originating from an ultrafast coupling of optically excited carriers into hot plasmon excitations in graphene. Such excitations show gate-tunable, non-Planckian emission characteristics due to the atom-level confinement of the electromagnetic states. These findings for plasmon emission in photo-inverted graphene open a new path for the exploration of mid-infrared emission processes, and this mechanism can potentially be exploited for both far-field and near-field applications for strong optical field generation. In the second part of the presentation, I will present a diamond resonant metasurface that can mediate efficient spin-photon interactions and enable a new type of quantum imaging system. This quantum metasurface containing nitrogen-vacancy (NV) spin ensembles coherently encodes information about the local magnetic field on spin-dependent phase and amplitude changes of near-telecom light. The projected performance makes the studied quantum imaging metasurface appealing for the most demanding applications such as imaging through scattering tissues and spatially resolved chemical NMR detection.

Hosted By: Professor Hui Cao