Shu Hu
- Ph.D., Stanford University
- B.S., Tsinghua University
Interests:
The Hu lab studies solar energy conversion, in the context of nanoscale electrochemical cells where reductive and oxidative reactions are in nanoscale proximity.
We are interested in sustainable light-driven chemical and materials transformation. Practical applications include the synthesis of H2, CO, C2H4, and small molecular-weight chemicals from light by using water, CO2 from the air, and dissolved inorganic carbon from the ocean.
By probing light-driven surface reactions, with energetics and rates coupled to non-equilibrium reactive transport, and employing multi-physics modeling and operando characterizations, we can design efficient and stable photocatalysts.
We are currently investigating the following areas:
- Semiconductor photoelectrochemistry
- Coatings for stable energy conversion
- Cascade molecular flux catalysis
- Energy-efficient AI hardware
Selected Awards & Honors:
- ACS ENFL Emerging Researcher Award (2024)
- Brown & Williamson Chemistry Lectureship (2022)
- Future Chemical Engineering Scholar, Global Academy of Chinese Chemical Engineers (2022)
- DOE Early Career Award (2021)
- Fellow, International Association of Advanced Materials (2021)
- Scialog Fellow, Negative Emissions Science (2020)
- Electrochemical Society, Division Young Investigator Award (2019)
- Journal of Materials Chemistry Emerging Young Investigator (2018)
- Gold Award, Materials Research Society (2011)
- TMS Ross N. Tucker Memorial Award (2011)
Selected Publications:
For a full list, visit Prof. Hu's Google Scholar profile.
- Photoelectrochemical Conversion of Dissolved Carbon in Seawater to Fuels under CO2(aq) Molecular Flux, B. Liu, Q. Zheng, S. Xiang, H. Su, Y. Zheng, C. He, R. Yanagi, W. Zhang, A. Kludze, S. Hu, Nature Communications, in press, doi: 10.1038/s41467-025-56106-3 (2024)
- Electrothermal Synthesis of Commodity Chemicals: Recent Advances, Remaining Challenges, and New Opportunities, Q. Dong,* S. Hu,* L. Hu, Nature Chemical Engineering 1, 680–690 (2024). doi: 10.1038/s44286-024-00134-1
- Photosynthesis of hydrogen peroxide from water and oxygen from a scaled-up 1-m2 reactor, X. Zhen, R. Yanagi, Z. Pan, C. Zhou, T. Liu, B. Chen, K. Katayamai, S. Hu*, C. Chu*, Chem Catalysis, in press (2024).
- Where Atomically Precise Catalysts, Optoelectronic Devices, and Quantum Information Technology Intersect: Atomic Layer Deposition of Ternary Materials, D. Solanki, C. He, Y. Lim, R., Yanagi, S. Hu, Chemistry of Materials, 36, 3, 1013–1024 (2024).
- A General Interfacial-Energetics-Tuning Strategy for Enhanced Artificial Photosynthesis, T. Liu, Z. Pan, K. Kato, J.-J. M. Vequizo, R. Yanagi, X. Zheng, W. Yu, A. Yamakata, B. Chen, S. Hu, K. Katayama, and C. Chu, Nature Communications, 13, 7783 (2023).
- Biocement from the Ocean: Hybrid Microbial-Electrochemical Mineralization of CO2, A. Kludze, D. Solanki, M. Lejeune, R. Yanagi; M. Ishii, N. Raychaudhuri, P. Anastas, N. Boyle, S. Hu, iScience, 25(10), 1055156 (2022). doi: 10.1016/j.isci.2022.105156.
- Tuning Intermediate Bands of Protective Coatings to Reach the Bulk-Recombination Limit of Stable Water-Oxidation GaP Photoanodes, X. Shen, T. Zhao, H. Su, M. Yang, J. Chen, Y. Liu, J. Li, R. Yanagi, D. Solanki, and S. Hu, Advanced Energy Materials, 12, 220314 (2022). doi: 10.1002/aenm.202201314.
- Emerging Dual-Functional 2D Transition Metal Oxides for Carbon Capture and Utilization: A Review, L. Yang, J. Heinlein, C. Hua, R. Gao, S. Hu, L. Pfefferle, Y. He, Fuel, 324 (B15), 124706 (2022). doi: 10.1016/j.fuel.2022.124706. doi: 10.1016/j.fuel.2022.124706.
- Charge Separation in Photocatalysts: Mechanisms, Physical Parameters, and Design Principles, R. Yanagi, T. Zhao, D. Solanki, Z. Pan, and S. Hu, ACS Energy Letters, 7, 432–452 (2022). doi: 10.1021/acsenergylett.1c02516.
- A Coating Strategy to Achieve Effective Local Charge Separation for Photocatalytic Coevolution, T. Zhao, R. Yanagi, Y. Xu, Y. He, Y. Song, M. Yang, and S. Hu, Proceedings of National Academy of Sciences, 16, 119(7) e2023552118 (2021). doi: 10.1073/pnas.2023552118.
- Selective Two-Electron Hydrogen Peroxide Conversion Tailored by Surface, Interface, and Device Engineering, J. Tang, D. Solanki, T. Zhao, and S. Hu, Joule, 6, 1432–1461 (2021). doi: 10.1016/j.joule.2021.04.012.
- In situ Identification of Reaction Intermediates and Mechanistic Understandings of Methane Oxidation over Hematite: A Combined Experimental and Theoretical Study, Y. He, F. Guo, K. Yang, J. Heinlein, S. Bamonte, J. Fee, S. Hu, S. Suib, G. Haller, V. Batista, L. Pfefferle, Journal of American Chemical Society, 142, 40, 17119–30 (2020). doi: 10.1021/jacs.0c07179.
- Stable CdTe Photoanodes with Energetics Matching to Coating Intermediate Band, Xiangyan Chen, Xin Shen, Shaohua Shen, Matthew O. Reese, and Shu Hu, ACS Energy Letters, 5, 1865 (2020). doi: 10.1021/acsenergylett.0c00603.
- RGB Arrays for Micro-LED Applications Using Nanoporous GaN Embedded With Quantum Dots, Jin-Ho Kang, Bingjun Li, Tianshuo Zhao, Muhammad Ali Johar, Chien-Chung Lin, Yen-Hsiang Fang, Wei-Hung Kuo, Kai-Ling Liang, Shu Hu, Sang-Wan Ryu, and Jung Han, ACS Applied Materials & Interfaces, 12, 27, 30890–30895(2020). doi: 10.1021/acsami.0c00839.
- Mutually-dependent kinetics and energetics of photocatalyst/ co-catalyst/two-redox liquid junctions, Zhenhua Pan, Yanagi Rito, Q. Wang, X. Shen, Q. Zhu, Y. Xue, J. A. Rohr, Takashi Hisatomi, Kazunari Domen, and Shu Hu, Energy & Environmental Science, 13, 162–173 (2019). doi: 10.1039/C9EE02910A
- Membrane-Less Photoelectrochemical Devices for H2O2 Production Enabled by Selective Water Oxidation to H2O2, S. Hu, Sustainable Energy & Fuels, 3, 101–114 (2019) doi: 10.1039/C8SE00329G.
- Controlled TiO2 Growth on Reverse Osmosis and Nanofiltration Membranes by Atomic Layer Deposition: Mechanisms and Potential Applications, X. Zhou, Y.-Y. Zhao, S.-R. Kim, M. Elimelech, S. Hu, J. Kim, Environmental Science & Technology, 52(24), 14311–14320 (2018). doi: 10.1021/acs.est.8b03967
- Stable Water Oxidation In Acid Using Manganese-Modified TiO2 Protective Coatings, G. Siddiqi, Z. Luo, Y. Xie, Z. Pan, Q. Zhu, J. A. Röhr, J. J. Cha, S. Hu, ACS Applied Materials & Interfaces, 10, 18805–18815 (2018). doi: 10.1021/acsami.8b05323
- Amorphous TiO2 Coatings Stabilize Si, GaAs and GaP Photoanodes for Efficient Water Oxidation, S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, N. S. Lewis, Science, 344, 1005–1009 (2014). doi: 10.1126/science.1251428
- Twin-Free GaAs Nanosheets by Selective Area Growth: Implications for Defect-Free Nanostructures, C.-Y. Chi, C.-C. Chang, S. Hu, T.-W. Yeh, S. B., Cronin, and P. D. Dapkus, Nano Letters, 13 (6), 2506 – 2515 (2013). doi: 10.1021/nl400561j
- Optical, Electrical, and Solar Energy-Conversion Properties of Gallium Arsenide Nanowire-Array Photoanodes, S. Hu, C.-Y. Chi, K. Fountaine, M. Q. Yao, H. A. Atwater, P. D. Dapkus, N. S. Lewis, and C. Zhou, Energy & Environmental Science, 6, 1879–1890 (2013). doi: 10.1039/C3EE40243F