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Experimental and computational model systems composed of frictionless particles in a fixed geometry have a
finite number of distinct mechanically stable (MS) packings. The frequency of occurrence for each MS packing
is highly variable and depends strongly on preparation protocol. Despite intense work, it is extremely difficult
to predict a priori the MS packing probabilities. We describe a novel computational method for calculating the
volume and other geometrical properties of the “basin of attraction” for each MS packing. The basin of attraction
for an MS packing contains all initial conditions in configuration space that map to that MS packing using a given
preparation protocol. We find that the basin is a highly complex structure. For a compressive-quench-from-zero-
density protocol, we show the existence of a small core volume of the basin around each MS packing for which
all points map to that MS packing. However, in contrast to previous studies for supercooled liquids, glasses,
and over-compressed jammed systems, we find that the MS packing probabilities are very weakly correlated
with this core volume. Instead, MS packing probabilities obtained from compression protocols that use initially
dilute configurations and do not allow particle overlaps (i.e., those relevant to granular media) are determined
by complex geometric features of the basin of attraction that are distant from the MS packing. In particular,
we find that the shape of the average basin profile function S(l), which gives the probability for a point on a
hyperspherical shell a distance l from a given MS packing to map back to that packing, can be described by a !

distribution with a peak that increases as the system size increases and as the quench rate decreases. We find a
simple model which predicts S(l) for the extreme cases of very slow and fast quench rates.
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I. INTRODUCTION

In contrast to equilibrium, thermal systems, the structural
and mechanical properties of dense granular materials and
other athermal particulate systems depend strongly on the
protocol used to create them. For example, a number of studies
have shown that the packing fraction of granular assemblies
can vary from values associated with random loose [1] to
random close packing [2] as a function of the vibration
amplitude and tapping history [3,4]. In addition, the force
chain networks that form, and thus the shear modulus of
granular packings depend on whether they have been generated
via shear, isotropic compression [5], or sedimentation via
single-particle or collective deposition [6].

The protocol dependence in dense granular systems arises
from the nonlinear, dissipative, and frictional contact inter-
actions between grains [7]. Despite active research in this
area, the distinct contributions from each of these interac-
tions to protocol dependence has not been determined. In
this manuscript, we investigate the protocol dependence of
static granular packings by focusing on a simple system of
frictionless spherical particles that interact via purely repulsive
linear spring and velocity-dependent damping forces. For a
fixed set of boundary conditions, there is a finite number
of distinct mechanically stable (MS) packings of frictionless
particles, which grows exponentially with the number of
particles N [8]. MS packings exist as discrete points in
configuration space that are characterized by the packing
fraction φJ and N particle coordinates "RJ = {"r1,"r2 . . . "rN } and
coincide with local minima of the density landscape [9,10]
(or local minima of the potential energy landscape with zero

potential V = 0). We have shown recently in both simulations
and experiments that the probabilities with which these distinct
MS packings occur are highly nonuniform and depend on
parameters of the packing-generation protocol including the
compression rate, damping coefficient, and initial packing
fraction [11,12]. However, one cannot yet determine a priori
which MS packings are the most versus the least probable,
much less calculate the packing probabilities as a function of
the packing-generation protocol. The ability to calculate MS
packing probabilities and, more specifically, the probability for
particular rigid structural motifs or patterns [13,14] to occur is
essential for developing a statistical mechanicslike description
of granular packings.

Here, we describe a novel method for calculating the
MS packing probabilities by measuring the volume of the
MS packing “basin of attraction,” which we define as
the collection of initial points in configuration space (i.e., the
dark-shaded region in Fig. 1) at zero packing fraction that map
to a given MS packing by following a compressive-quench-
from-zero-density protocol (which corresponds to dynamics
on the density landscape and is described in detail in Sec. II).
Note that our definition of the basin of attraction is protocol
dependent, and thus the basin volume will vary with the rate
at which energy is dissipated, the compression rate, and other
parameters. In contrast, basins of attraction for supercooled
and glassy liquids [15] and overcompressed jammed systems
[16] have been defined as the set of initial dense liquid
configurations that map to the “nearest” local minimum using
steepest descent dynamics at fixed density. Our definition of
basin volumes is directly relevant for granular systems (as well
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FIG. 1. (Color online) (Top) A schematic of the basin of attraction
(dark-shaded region) in dN -dimensional configuration space for
a typical mechanically stable packing (black dot). (Bottom) The
corresponding unweighted basin profile function f !

n (l) is plotted as
a function of distance l from MS packing n for packing-generation
protocol !. f !

n (l) begins to decay from 1 beyond an approximately
spherically symmetric core size lc, while for l > lc the basin is highly
branched, threadlike, and f !

n (l) → 0.

as athermal polymer packings [17–20]), in which MS packings
are generated from initially dilute configurations followed
by compression and relaxation, where particle overlaps are
negligible during the relaxation process and in the final MS
packing.

Calculating MS packing basin volumes is a computationally
complex problem because the average basin volume scales
as e−N , and the number of basins grows exponentially eN ,
where N is the number of particles. Thus, random sampling
of configuration space will not yield accurate measurements
of MS packing basin volumes in the large-N limit [16,21]. To
aid in the calculation of the basin volumes, we introduce the
unweighted basin profile function f !

n (l), which is the fraction
of points on a hypersurface in configuration space a distance
l from the nth MS packing that maps via a given dynamics
(labeled !) to MS packing n.

We will show that there is a hyperspherical core region
surrounding each MS packing in which f !

n (l) = 1 for l ! lc,
while f !

n (l) < 1 for l > lc. Further from the MS packing, the
basin becomes highly branched, threadlike, and f !(l) → 0
(see Fig. 1.) This picture raises several key questions: (1)
Are the MS packing packing probabilities determined by the
size lc of the core region in configuration space or dominated
by contributions far from the MS packing, (2) what are the
geometrical properties of the basins of attraction, and (3)
do their morphologies depend sensitively on the packing-
generation protocol? We will show below that the MS packing
probabilities are not strongly correlated with the volume of the

core regions in configuration space and are instead determined
by features of the density landscape that are far from each MS
packing. Despite this, we are able to predict the protocol- and
system-size dependence of the average basin profile function,
which determines the MS packing probabilities.

II. METHODS

To perform our calculations of basin volumes, we focused
on a well-characterized model system composed of N friction-
less disks in two dimensions that interact via purely repulsive
linear spring and velocity-dependent damping forces. N is
varied from 3 to 100, and the particles are enclosed in a square
cell with fixed walls of length L = 1. Interactions with the
walls match those between the particles. We consider both
monodisperse and bidisperse systems, where the bidisperse
mixtures contain half large and half small disks (Ns = Nl =
N/2) with diameter ratio σl/σs = 1.4.

In a number of previous studies, we described the MS
“packing finder” that generates a mechanically stable packing
via isotropic compression at φJ with infinitesimal overlap
from an arbitrary initial condition at φ = 0 [11]. Briefly, the
algorithm includes the following steps. For each trial, we
initialize the system with random particle positions inside the
unit square at φ = 0 and zero velocities. We then compress
the system in steps of $φ = 10−4 and relax the small particle
overlaps after each step by solving Newton’s equations of
motion with damping,

m"ai =
∑

j

"F (rij ) − b"vi, (1)

where m, σ , and "ai are the particle mass, diameter, and
acceleration,

"F (rij ) = ε

σ

(
1 − rij

σ

)
&

(
1 − rij

σ

)
r̂ij , (2)

ε is the characteristic energy scale of the repulsive spring force
"F (rij ) [22], &(x) is the Heaviside step function, b̃ = bσ/

√
mε

is the damping coefficient, r̂ij is the unit vector connecting the
centers of particles i and j , and rij is their separation, until
the kinetic energy per particle falls below a specified tolerance
K/εN < Ktol = 10−25. We studied a wide range of values for
the damping coefficient from b̃ = 10−2 to 10, which mimics
steepest descent dynamics. The packing-generation algorithm
terminates when the minimized total potential energy per par-
ticle V/εN > Vtol = 10−16. As in previous studies on similar
systems with periodic boundary conditions, we distinguish
MS packings based on the spectrum of nontrivial eigenvalues
of the dynamical matrix [12], and we find that the number
of distinct MS packings Ns grows exponentially with N as
shown in Table I. The Ns = 6 and 80 distinct MS packings for
N = 4 and 6 are shown in Figs. 2 and 3. The light-shaded (blue)
particles form the force-bearing backbones of the mechanically
stable packings. The dark-shaded (red) particles are “rattlers”
with fewer than three particle-particle or particle-wall contacts.
The packing finder does produce a small number of unstable
packings as shown in the upper left corner in Fig. 2, but these
are not included in the analyses.
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TABLE I. The number of distinct mechanically stable packings
Ns and total number of microstates Nm versus the number of particles
N . For N = 3 we consider monodisperse systems. For the other
system sizes, results are given for bidisperse mixtures. For N = 12
we estimate Ns and Nm. We do not include unstable packings such as
the one in the upper left corner of Fig. 2 in which the “rigid backbone”
of light-shaded (green) particles can translate.

N Ns Nm

2 1 4
3 1 24
4 6 136
6 80 19440
12 ∼12 000 ∼4 × 1010

The fundamental quantity in our approach is the unweighted
basin profile function f !

n (l) defined as

f !
n (l) =

∫
d "RG!

( "R, "Rn
J

)
δ
(∣∣ "R − "Rn

J

∣∣ − l
)
, (3)

where f !
n (l) is sampled on hyperspherical shells a distance l

from MS packing n, ! is the specified compression dynamics,
δ(x) is the Dirac delta function, G!( "R, "Rn

J ) = 1 for points
"R in configuration space that map to MS packing "Rn

J , and
0 otherwise. As an illustrative example, we calculate slices
of G!( "R, "Rn

J ) for N = 3, which has a single MS packing with
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FIG. 2. (Color online) The bottom six configurations are the
Ns = 6 distinct mechanically stable packings for bidisperse systems
with N = 4. (We will refer to configurations 1 through 6 counting
in ascending order from left to right and bottom to top.) The
light-shaded (blue) particles form the force-bearing backbones of
the mechanically stable packings. The dark-shaded (red) particles
are “rattlers” with fewer than three particle-particle or particle-wall
contacts. The packing finder generates a small number of unstable
configurations similar to that shown in the upper left corner with
probability less than 0.2%, but these are not included in the analyses.
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FIG. 3. (Color online) The Ns = 80 distinct mechanically stable
packings for bidisperse systems with N = 6. The light-shaded (blue)
particles form the force-bearing backbones of the mechanically stable
packings. The dark-shaded (red) particles are “rattlers” with fewer
than three contacts. The unweighted and weighted basin profile
functions are shown in Fig. 13 for the configuration in the third
row that is shaded gray.

Nm = 24 microstates, (i.e., six particle-label permutations and
four polarizations obtained by applying all possible reflections
and rotations in two dimensions consistent with the square cell
boundary conditions [12]). In Fig. 4, we plot the microstate
basins of the attraction

∑Nm

n=1 nG({"r1,"r0
2 ,"r0

3 }, "Rn
J ) for fixed "r0

2 =
(0.2,0.6) and "r0

3 = (0.45,0.85).
We calculate the unweighted basin profile function f !

n (l)
using two procedures; the first method is efficient and accurate
for small l and the second for large l. For method 1, we
generate at least M = 106 points randomly on the surface of
a 2N -dimensional hypersphere centered on the MS packing
with radius l. We then input each of these configurations
as initial configurations into the MS packing finder with
packing fraction φi = 0. If a given initial condition belongs
to the basin of attraction of MS packing n, the packing
finder will generate packing n. Otherwise, the initial condition
belongs to a different basin. For the system sizes where
we can achieve complete enumeration, we found that the
criterion, maxi(d

j
i − dk

i )/dk
i < 10−6, was sufficiently sensitive

to distinguish MS packings, where d
j
i is the ith sorted

eigenvalue of the dynamical matrix for MS packing j . From
method 1, the unweighted basin profile function for MS
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FIG. 4. (Color) The microstate basins of attraction for a system
of three monodisperse frictionless disks, where particles 2 and 3
are initially located at positions (0.2,0.6) and (0.45,0.85) in the x-y
plane (with the origin in the lower left corner). Results are shown for
two damping coefficients, (a) b̃ = 1 and (b) b̃ = 0.1. The position
of each pixel represents the initial position of particle 1 and its
color corresponds to one of the 11 out of 24 microstates in (c) to
which the system evolved under the compression protocol. For N = 3
monodisperse systems, there is one distinct MS packing (Ns = 1)
with four polarizations (hue; rows) and six permutations (saturation;
columns) for a total of Nm = 24 microstates.

packing n is

f !
n (l) = Mn

M
, (4)

where Mn is the number of initial conditions at l that map to
to packing n.

We define the basin volume for MS packing n generated
using compression dynamics ! as

Vn =
∫ √

2N

0
S!

n (l)dl, (5)

where

S!
n (l) = A2Nf !

n (l)l2N−1PnNs!Nl! (6)

is the (angle-averaged) weighted basin profile function, Ak =
2π k/2/!(k/2) is the surface area of a k-dimensional unit
sphere, and Pn is the number of distinct polarizations for MS
packing n [12]. The probability of MS packing n for a given
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FIG. 5. (Color online) (Top) The unweighted f !
n (l) and (bottom)

weighted S!
n (l) basin profile functions measured for N = 4 and b̃ = 1

using methods 1 (circles) and 2 (solid lines) for MS packings 1
(highest probability; dark blue line) and 4 (lowest probability; light
red line) shown in Fig. 2. The vertical lines indicate lc for each MS
packing.

compression protocol ! is proportional to its basin volume,
P !

n = V !
n /Vtot, where Vtot =

∑Ns

n=1 V !
n = L2N = 1.

Method 1 becomes inefficient at calculating f !
n (l) for large

l > lc because the ratio of the area of the intersection of the
basin with the hypersphere to the area of the hypersphere
becomes extremely small. Thus, in this regime we implement
method 2, which was previously employed to calculate the
probabilities P !

n directly [8]. For this method, we generate at
least 106 random points in configuration space and input these
into the packing finder with φi = 0. The fraction of random
initial configurations that map to MS packing n determines
P !

n . We can then calculate f !
n (l) from P !

n using Eqs. (5)
and (6). Note that an advantage of method 2 is that each initial
condition provides information about P !

n for some n and for
Ns!Nl! distances l by permuting the labels of the final MS
packing. See the Appendix for the effects of rattler particles
on the unweighted basin profile function f !

n (l).

III. RESULTS

Typical basin profile functions f !
n (l) are shown for the most

and least probable MS packings (1 and 4 in Fig. 2) for N = 4
in the top panel of Fig. 5. For small distances from the MS
packing l < lc, f !

n (l) = 1. Beyond the core size lc, which can
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FIG. 6. (Color online) The distance lc beyond which the un-
weighted basin profile function f !

n (l) < 1 plotted versus the location
of the peak lp in the weighted basin profile function S!

n (l) for each MS
packing for N = 4 (asterisks) and 6 (circles) obtained using method 1
with damping parameter b̃ = 1. The solid lines indicate lc = lp (top)
and lc = 0.4lp (bottom).

vary strongly from one MS packing to another, f !
n (l) decays

rapidly to zero. In the bottom panel of Fig. 5, we show the
weighted basin profile S!

n (l) for the same N = 4 MS packings.
Since S!

n (l) is obtained by multiplying f !
n (l) by l2N−1, the

probabilities for obtaining MS packings (when starting from
zero packing fraction) are determined by distances l > lc. For
N = 4, the average and maximum core sizes are 〈lc〉 ≈ 0.1
and lmax

c = 0.21, and the small particle diameter is σ = 0.3,
but the average length scale that yields 50% of the packing
probabilities [near the peak in S!

n (l)] is 〈lp〉 ≈ 0.5. We find
that lc/ lp < 1 for all MS packings for N = 4 and 6 as shown
in Fig. 6. We have validated these results by ensuring that
methods 1 and 2 yield the same values for f !

n (l) and S!
n (l)

over the range in l in which the calculations overlap.
In the top panel of Fig. 5, we show that the core size for

the most probable N = 4 MS packing is larger than that for
the least probable MS packing, which may suggest that there
is a correlation between the core size and the MS packing
probabilities. To investigate to what extent the hyperspherical
core surrounding each MS packing determines the packing
probabilities, we approximate the basin volume by the volume
of a hypersphere of radius lc, V c

n = πNl2N
c /!(N + 1), for each

MS packing. In Fig. 7, we plot V c
n /Vtot versus P !

n for N = 4
and 6. We find two key results: (1) The volumes V c

n /Vtot are
smaller by many orders of magnitude than the probabilities
P !

n and (2) a power-law fit to the data for N = 6 yields
V c

n /Vtot ∼ (P !
n )λ with λ ≈ 7.5, but there is only a very weak

correlation between V c
n /Vtot and the packing probabilities [11].

For example, the scatter in the data can vary by more than 20
orders of magnitude! Thus, features of the basin geometrical
structure beyond the core region control the MS packing
probabilities for packings that are generated from dilute initial
configurations.

To begin to investigate the nature of the basin morphology
beyond the core region, we characterize in detail the shapes
of the weighted basin profile functions for each of the Ns MS
packings for N = 6 in Fig. 8(a). As found for the distribution
of Voronoi volumes in dense granular packings [23–25], the
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FIG. 7. (Color online) The volume V c
n of the hyperspherical cores

surrounding each MS packing n (relative to Vtot) plotted as a function
of the MS packing probability P !

n for each MS packing for N = 4
(asterisks) and 6 (circles) obtained using method 1 with damping
parameter b̃ = 1. The solid (dashed) line has slope 1 (7.5).
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FIG. 8. (Color online) (a) The weighted basin profile functions
S!

n (l) (for each of the Ns = 80 distinct MS packings for N = 6)
sampled on hyperspherical shells a distance l from MS packing n

using method 2 with b̃ = 1. (b) The scaled weighted basin profile
function S

!

n (l) = [S!
n (l)θ!(k)e−l/θ ]1/(k−1) plotted versus the scaled

distance l = l/θ obtained from nonlinear least-squares fits to the
data in (a) for k and θ . The solid line has slope 1 and zero vertical
intercept.
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FIG. 9. (Color online) The average weighted basin profile func-
tion S!(l) for several system sizes N = 2, 4, 6, 8, 10, 12, and 100
(from left to right) for damping parameter b̃ = 1. The inset shows the
parameters k (circles; left axis) and 100θ (squares; right axis) that
describe fits of S!(l) to the ! distribution [Eq. (7)] versus N on a
log-log scale.

form of S!
n (l) is described by a ! distribution,

S!
n (l) =

(
l
θ

)k−1
e− l

θ

θ!(k)
, (7)

where θ = (〈l2〉 − 〈l〉2)/〈l〉, k = 〈l〉/θ , and 〈l〉 =∫ ∞
0 dllS!

n (l). The scaled weighted basin profile functions

S
!

n (l) = [S!
n (l)θ!(k)e−l/θ ]1/(k−1) for all microstates collapse

when plotted versus the scaled distance l = l/θ . The wider
scatter at large l is caused by undersampling low probability
configurations. We find similar quality for the collapse at
larger N .

We investigate the system size dependence of the average
weighted basin profile function,

S!(l) =
Ns∑

n=1

P !
n S!

n (l), (8)

in Fig. 9 over the range N = 2−100. S!(l) shifts to larger l
with increasing N ; the peak position k increases by a factor of
5 and scales roughly as

√
N over this range in N . The width θ

slightly narrows over the same range of N , scaling roughly as
N−1/4.

We also investigated the protocol dependence of the basin
profile functions by varying the damping parameter [̃b in
Eq. (1)] used in the packing-generation procedure for method
2. In the top panel of Fig. 10, we plot the average weighted
basin profile function versus the damping parameter over three
orders of magnitude in b̃ from 10−2 to 10 for N = 4. We were
able to saturate the b̃ dependence of S!(l) for both large and
small b̃, that is, for b̃ < 10−2 and b̃ > 10, S!(l) is very weakly
dependent on b̃. The two parameters k and θ that describe the
shape of S!(l) exhibit two key features in the bottom panel
of Fig. 10: (1) The peak of the distribution (captured by k)
and thus the length scales that determine the MS packing
probabilities increase with decreasing b̃ and (2) the variance
(relative to the average) depends weakly on b̃, but does possess
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FIG. 10. (Color online) (a) The average weighted basin profile
function S!(l) for N = 4 plotted over a wide range of the damping
coefficients b̃ employed in method 2. b̃ ranges from 0.01 to 10 from
left to right. The thin dotted line gives the probability distribution that
a random point in configuration space is a distance l from the nearest
permutation and polarization of any MS packing. The thick dotted
line is the probability distribution that a random point in configuration
space is a distance l from a particular permutation and polarization of
the MS packing found in the lower left panel of Fig. 2, which is the
most probable MS packing for small b̃. (b) The parameters k (circles;
left axis) and 100θ (squares; right axis) that describe fits of S!(l) in
(a) to the ! distribution [Eq. (7)] versus b̃.

a small peak near b̃ = 10−1. We expect the monotonic increase
of k (average l) with decreasing b̃ to persist for large N.

We are able predict S!(l) in the limits of large and small b̃.
Lowering b̃ decreases the rate at which energy is removed from
the system and allows the system to explore larger regions of
configuration space. The thick dotted line gives the probability
distribution that a random point in configuration space is a
distance l from a particular permutation and polarization of
the MS packing found in the lower left panel of Fig. 2, which
is the most probable MS packing for small b̃. This distribution
matches S!(l) for b̃ → 0. In contrast, larger b̃ increases the rate
at which energy is removed from the system, and thus the initial
configurations are typically closer to the final MS packings.
The thin dotted line in Fig. 10, which shows the probability
distribution that a random point in configuration space is a
distance l from the nearest permutation and polarization of
any MS packing, gives a similar distribution to S!(l) in the
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FIG. 11. (Color online) Example of a case when an initial
condition for the N = 4 system (center) does not map to the closest
MS packing (right) via steepest descent (̃b → ∞) (left).

large b̃ limit. The small deviation is due to the fact that some
points in configuration space cannot map to the nearest MS
packing due to steric constraints (see Fig. 11).

IV. CONCLUSIONS

In this manuscript, we described and carried out a novel
computational method for calculating the volume of the
MS packing “basins of attraction,” which we define as the
collection of initial points in configuration space at zero
packing fraction that map to a given MS packing by following
a particular dynamics in the density landscape. Note that our
definition of the basin of attraction is protocol dependent, and
thus the basin volume will vary with the rate at which energy is
dissipated, the compression rate, and other parameters. Using
dilute configurations as initial conditions, preventing particle
overlaps, and including variations in the basin volume with
changes in the packing-generation protocol are crucial for un-
derstanding the protocol-dependent structural and mechanical
properties of granular media and other athermal particulate
systems.

Our computational studies of the basin volumes of MS
packings have uncovered three important results: (1) A small
approximately hyperspherical region of the basin of attraction
with radius lc surrounds each MS packing, but the volume
of this region (relative to Vtot) is much smaller and only
very weakly correlated with the MS packing probabilities
in contrast to previous studies of jammed systems [16];

1

3

4

5

6

2
2

FIG. 12. (Color online) 113 snapshots of one of the N = 6
mechanically stable packings (shaded gray in Fig. 3) generated from
independent random initial conditions. This packing contains one
rattler particle (labeled 2) that can be positioned in the cavity on the
left or right and at multiple positions in the right cavity.

(2) the probabilities of MS packings initialized with dilute
configurations are instead controlled by features of the basins
of attraction at length scales much further from the MS
packing than the core region. In addition, the length scales
that control the MS packing probabilities grow with increasing
system size and decreasing damping parameter b̃; and (3) the
shape of the basin profile functions are well characterized by
! distributions, which can be reconstructed by considering
distances between random points in configuration space in the
limits of large and small b̃.

Our results suggest a number of promising future studies to
better understand the geometrical features of basin volumes.
For example, the current studies focused on calculating basin
volumes for MS packings initialized at zero packing fraction.
We propose to calculate the basin profile functions as a function
of the initial packing fraction φi , and identify the characteristic
packing fraction φ∗

i above which packing probabilities are
determined by the hyperspherical core region of the basin
volume. Second, we will perform powerful computational
homology (Betti number [26]) and geometry techniques
(Laplacian eigenmaps [27]) to characterize the structure of
basin volumes as a function of distance l from the MS packing.

We emphasize that there are several key steps in develop-
ing a “bottom-up” statistical mechanics description of MS
packings: (1) understand the geometrical properties of the
MS packing basins of attraction, (2) relate the geometrical
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FIG. 13. (Color online) The basin profile function f !
n (l) on linear-

log (top) and log-log (bottom) scales measured using methods 1
(circles) and 2 (solid lines) for the MS packing in Fig. 12 for b̃ = 1.
The vertical lines indicate lc.
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features of the basins of attraction to real-space properties of
the MS packings on the particle scale, and (3) coarse-grain
this description to predict bulk properties, such as the elastic
moduli and yield stress. This manuscript has contributed to the
first of these steps.
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APPENDIX: RATTLER PARTICLES

As shown in Figs. 2 and 3, MS packings contain rattler
particles. Two of the Ns = 6 distinct MS packings for N = 4
and 24 of theNs = 80 distinct MS packings for N = 6 contain
rattler particles. For these small-N systems, the fraction of
MS packings that contain rattlers is larger than the fraction
of particles (roughly 5%–10%) that are rattlers in large MS
packings [22]. These previous results suggest that the number
of MS packings containing rattlers is extensive with Ns [28].
How do rattler particles affect the calculation of the basins of
attraction for MS packings?

We find that the correspondence between the unweighted
f !

n (l) and weighted S!
n (l) basin profile functions breaks down

for small l for MS packings that contain rattler particles. As
shown in Fig. 12, for MS packings containing rattlers it is
difficult to define uniquely the distance from the initial state
to the final MS packing because the rattler particle can exist
over a range of positions for a given distinct MS packing.
Further, the different rattler locations may give widely varying
contributions to the MS packing probability.

In Fig. 13, we plot f !
n (l) calculated using methods 1

(circles) and 2 (solid lines) for the MS packing depicted in
Fig 12. As described in Sec. III, for method 1, we measure the
fraction of times the system returns to the initial MS packing
after a perturbation of size l, which is largely unaffected by the
presence of rattlers. For method 2, we measure the normalized
distribution of distances between the initial configurations and
the final MS packings. For large l, method 2 is also largely
unaffected by the presence of rattlers. However, when the
initial configuration and final MS packing are close together
(i.e., small l), the fact that the rattler is not always in the
same position in the final MS packing leads to a significant
error in measuring l and hence f !

n (l), as shown in Fig. 13.
For our measurements of basin volumes at small l, such as
V c

n in Fig. 7, we show results using method 1. Our main
results are insensitive to the presence of rattler particles
because MS packing probabilities (generated from initially
dilute configurations) are determined by features of f !

n (l) at
large l.
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