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We conduct molecular dynamics simulations of athermal systems undergoing boundary-driven planar
shear flow in two and three spatial dimensions. We find that these systems possess nonlinear mean velocity
profiles when the velocity u of the shearing wall exceeds a critical value u.. Above u., we also show that
the packing fraction and mean-square velocity profiles become spatially dependent with dilation and
enhanced velocity fluctuations near the moving boundary. In systems with overdamped dynamics, u, is
only weakly dependent on packing fraction ¢. However, in systems with underdamped dynamics, u,. is set
by the speed of shear waves in the material and tends to zero as ¢ approaches ¢, which is near random
close packing at small damping. For underdamped systems with ¢ < ¢, u, is zero; thus they possess

nonlinear velocity profiles at any nonzero u.
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Driven, dissipative systems are ubiquitous in nature
(occurring much more frequently than equilibrium thermal
systems) and display complex behaviors in response to
applied loads, such as hysteretic and spatially dependent
flows. Many of these systems such as granular materials
[1,2], metallic glasses [3], and complex fluids, for example,
emulsions [4], foams [5,6], and wormlike micelles [7], do
not flow homogeneously with a linear velocity profile when
they are sheared. Shear localization or banding can occur
where a small fraction of the system near one of the
boundaries undergoes strong shear flow while the remain-
der of the system is nearly static. Despite much intense
work, a complete description of how these systems respond
to shear stress is not available. We perform molecular
dynamics (MD) simulations of repulsive athermal particu-
late systems in two (2D) and three (3D) spatial dimensions
undergoing boundary-driven planar shear flow to study
mechanisms that give rise to spatially inhomogeneous
velocity profiles. These studies will be most relevant to
shear flows in athermal systems, such as granular materials
and foams.

We answer several important questions in this Letter.
First, does the packing fraction of the system strongly
influence the shape of the velocity profiles? Most previous
simulations investigating velocity profiles in sheared sys-
tems have been performed either near random close pack-
ing as in simulations of granular materials [8] or at high
density as in studies of Lennard-Jones liquids [9] and
glasses [10,11]. However, a systematic study of the role
of density has not been performed. Nonlinear velocity
profiles have been found at both high density and near
random close packing, but it is not clear whether the same
physical mechanism is responsible in both regimes.

We also consider the influence of the speed u of the
shearing boundary on the velocity profiles. Results from
previous simulations of glassy systems [10,11] indicate
that a critical velocity u, exists below which the mean
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velocity profiles become nonlinear [12]. These studies
have found that u, coincides with the velocity at which
the constant velocity flow curve falls below the yield stress
at constant stress. In this Letter, we concentrate on the
larger u regime and ask whether the velocity profiles
remain linear for all u > u,. We show that a different
transition takes place—the velocity profile switches from
linear to nonlinear—when the boundary velocity exceeds
u, = ug. The onset of nonlinear velocity profiles at large u
also coincides with the appearance of nonuniform packing
fraction and temperature profiles. The flow regimes are
depicted in Fig. 1 using the flow curve for an underdamped
athermal system in 2D.

To demonstrate these results, we performed a series of
molecular dynamics simulations of soft repulsive athermal
systems undergoing boundary-driven shear flow under
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FIG. 1. Shear stress 3 vs velocity u of the wall moving at
constant velocity (circles) or stress (squares) for a 2D under-
damped athermal system with harmonic spring interactions at
¢ = 0.85. Eys is the yield stress at constant stress and uy is the
wall velocity at which % = 3., We show later that the mean
velocity profiles become nonlinear when u > u,.
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conditions of fixed volume, number of particles N, and
velocity of the top shearing wall u. The systems were
composed of N/2 large and N/2 small particles with equal
mass m and diameter ratio 1.4 to prevent crystallization
and segregation. Initial states were prepared by quenching
the system from random initial positions to zero tempera-
ture [13] using the conjugate gradient method [14] to
minimize the system’s total potential energy. During the
quench, periodic boundary conditions were implemented
in all directions. Following the quench, particles with
y coordinates y > L, (y <0) were chosen to comprise
the top (bottom) boundary. The walls were therefore rough
and amorphous. Results did not depend on the thermal
quench rate provided the systems were sheared long
enough to remove initial transients.

Shear flow in the x direction with a shear gradient in the
y direction was created by moving all particles in the top
wall at fixed velocity u in the x direction relative to the
stationary bottom wall. Therefore, particles in the walls do
not possess velocity fluctuations. During the shear flow,
periodic boundary conditions were imposed in the x and
z directions (in 3D). The system size was varied in the
range N = [256,3072] to assess finite-size effects. Only
small sample sizes were required in the x and z directions.
In contrast, more than = 50 particle layers were required in
the shear-gradient direction to remove finite-size effects.
Most simulations were carried out using L, = L, = 18¢
and L, = 720, where o is the small particle diameter. The
systems were sheared for a strain of 5 to remove initial
transients and then quantities like velocity, pressure, and
shear stress (obtained from the ‘“‘microscopic’ pressure
tensor [15]) and local packing fraction were measured as
a function of distance y from the stationary wall. Averaged
quantities were obtained by sampling between strains of 5
to 10.

Bulk and boundary particles interact via the following
pairwise, finite-range, purely repulsive potential: V(r;;) =
e(l — r;j/o;))*/a, where a@ = 2,5/2 correspond to har-
monic and Hertzian spring interactions, respectively, € is
the characteristic energy scale of the interaction, o;; =
(0; + 0;)/2 is the average diameter of particles i and j,
and r;; is their separation. The interaction potential is zero
when r;; = o;;. Our results were obtained over a range of
packing fraction from ¢ = [0.58,0.80] in 3D and ¢ =
[0.75,1.0] in 2D, which allows us to probe packing frac-
tions both above and below random close packing [13].
The units of length, energy, and time are o, €, and o\/m/ e,
respectively.

For athermal or dissipative dynamics, the position and
velocity of each particle are obtained by solving [16]

d*7; _
dr?

m

ﬁzr - bZ(ai - 171‘), (D
J

where F = —> ;dV(r;)/dr;;t;;, the sums over j include
only particles that overlap i, v; is the velocity of particle i,

and b > 0 is the damping coefficient. In the present study
we do not consider rotational motion of the particles; the
influence of the rotational degrees of freedom on the
velocity profiles will be discussed elsewhere [17]. The
dynamics can be changed from underdamped to over-
damped by increasing the dimensionless damping coeffi-
cient b* = bo/+/em. Frictionless granular materials and
model foams can be studied using b* < b7 [16] and b™ >
b [18], respectively, where b’ = +/2 for harmonic spring
interactions.

Three physical parameters, the packing fraction ¢, the
velocity u of the moving boundary, and the dimensionless
damping coefficient b*, strongly influence the shape of the
mean velocity profiles. First, we find that a critical bound-
ary velocity u, exists that separates linear from nonlinear
flow behavior. For u < u. (but not in the quasistatic flow
regime), the mean velocity profiles in the flow direction are
linear; however, when u > u, they become nonlinear. The
width of the shearing region decreases as u continues to
increase above u,. This is shown in Fig. 2(a) for an under-
damped (b* < b}) system in 2D with harmonic spring
interactions at ¢ = 0.85. As u is increased above u, =
0.08, the mean velocity profiles become more and more
nonlinear. When the boundary velocity has increased to
u = 0.75 in Fig. 2(a), approximately 80% of the system is
nearly static, while the remaining 20% undergoes shear
flow.

We also monitored the local packing fraction and mean-
square velocity fluctuations (or kinetic temperature) during
shear. These are shown for the same dense system with
underdamped dynamics in Figs. 2(b) and 2(c). We find that
when the mean velocity profile is linear, the packing frac-
tion and velocity fluctuations are spatially uniform.
Moreover, the velocity fluctuations in the x and
y directions are identical. However, when the boundary
velocity exceeds u,, the packing fraction and mean-square
velocity profiles become spatially dependent. In this re-
gime, the compressional forces induced by the shearing
boundary are large enough to cause dilatancy. The system
becomes less dense near the shearing wall and more com-
pact in the nearly static region. In addition, the shearing
wall induces a kinetic temperature gradient with velocity
fluctuations larger near the shearing boundary. The kinetic
temperature also becomes anisotropic with (Sv2) < (8 u§>
when u > u.. Thus, several phenomena occur simulta-
neously as the boundary velocity is increased above u,.:
(i) the velocity profile becomes nonlinear, (ii) the system
dilates near the shearing boundary and compacts in the
bulk, and (iii) the kinetic temperature becomes higher near
the shearing wall.

We have measured the critical wall velocity u, as a
function of packing fraction ¢ for underdamped systems
with harmonic and Hertzian spring interactions in 2D and
3D. To calculate u,., we successively lowered the boundary
velocity from above until the average velocity profile of the
central region of the cell (y/L, = [0.2,0.8]) was within
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FIG. 2. (a) Average velocity (v,) (normalized by u) in the flow
direction, (b) local packing fraction ¢, and (c) velocity fluctua-
tions (6v§,y> in the x (solid lines) and y directions (symbols) as a
function of height y/L, from the stationary wall in a 2D system
with harmonic spring interactions and underdamped dynamics
(b* = 0.01) at ¢ = 0.85. In each panel, four boundary velocities
are shown; triangles, diamonds, squares, and circles correspond
to u = 0.075, 0.15, 0.37, and 0.75, respectively. The inset to (c)
compares velocity fluctuations in the x and y directions at u =
0.75.

rms velocity fluctuations of a linear profile. As shown in
Fig. 3, we find that u,. is nearly constant at large ¢ but then
decreases sharply as ¢ approaches a critical packing frac-
tion ¢, [19]. For ¢ < ¢, u, = 0 with ¢, = 0.82 for
harmonic and ¢, = 0.80 for Hertzian springs in 2D and
¢. = 0.61 for harmonic springs in 3D. We expect quali-
tatively similar behavior for u#, for Hertzian springs in 3D
with a ¢, that is a few percent below that for harmonic
springs in 3D. These values for ¢, are close to recent
measurements of random close packing in systems at
zero temperature [13].

A possible interpretation of the critical wall velocity u,
can be obtained by comparing the time it takes the system
to shear a unit strain to the time it takes a shear wave (with
speed ur) to traverse the system and return to the shearing
boundary. This simple argument predicts u, = uzy/2. ur
can be obtained by studying the transverse current corre-
lation function Cy(w, k) as a function of frequency w and
wave number k = 27rno /L, (n = integer) and the result-
ing dispersion relation wy(k) [20]. In Fig. 3, we compare
ur = dwy/dk (for n = 3 to 12) and u, as a function of ¢
for both potentials in 2D and for harmonic springs in 3D
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FIG. 3. Critical velocity u, of the moving wall versus packing
fraction ¢ in (a) 2D and (b) 3D systems with harmonic (circles)
and Hertzian (squares) spring interactions. The open and filled
symbols correspond to b* = 0.01 and b* = 5, respectively. For
underdamped systems, we plot uz/2 for harmonic (small circles)
and Hertzian (small squares) spring interactions, where uy is the
shear wave speed.

[21]. Although deviations occur close to ¢, we find that u,.
agrees very well with u;/2 over a wide range of ¢. We
point out that u,. ~ uy tends to zero as ¢ approaches
random close packing. Thus, we expect the mechanism
for nonlinear velocity profiles described here to occur in
experiments on even moderately sheared granular systems.
Measurements of u#, and u; in granular systems under-
going planar shear flow are required to verify this.

What is the shape of velocity profiles in dilute under-
damped systems with ¢ < ¢.? Since u, = 0 for ¢ < ¢,
we expect that mean velocity profiles in these dilute sys-
tems are nonlinear for all nonzero u. This is indeed what
we find for all systems studied. Figure 4 shows the mean
velocity profiles for a 2D underdamped system at ¢ < ¢,
over three decades in u. In contrast to the behavior in dense
systems, the velocity profiles are not monotonic in u.
However, there is a range of boundary velocities (one
decade) over which the velocity profiles collapse onto a
common exponential profile over 70% of the system.
Robust exponential profiles have also been found over a
wide range of shear rates in experiments of granular ma-
terials [2]. Spatially dependent packing fraction and mean-
square velocity profiles also occur for all u # 0.

Boundary-driven shear flow in overdamped systems is,
however, substantially different from that in underdamped
systems since velocities of neighboring particles are
strongly coupled. Figure 3 shows that in the overdamped
limit (b* > b}), the critical boundary velocity is nearly
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FIG. 4. Average velocity (v,)/u in the shear flow direction as a
function of height y/L, from the stationary wall in a 2D under-
damped system with harmonic spring interactions at ¢ =
0.81 < ¢,. Three boundary velocities are shown; squares, down-
ward triangles, and pluses correspond to u = 0.38, 0.038, and
7.7 X 1074, respectively. The inset shows that there is a wide
range of u from 0.0077 (leftward triangles) to 0.077 (circles) over
which the velocity profiles collapse.

independent of ¢ over the studied range in both 2D and
3D. We also find that u, increases linearly with b*; thus the
velocity profiles tend toward linear profiles as the damping
increases at fixed u.

We have also studied sheared repulsive systems thermo-
stated at temperatures below the glass transition using the
Gaussian constraint thermostat on velocity components
perpendicular to the shear flow [15] to determine whether
our results also hold for glasses. We find qualitatively
similar results to those found in underdamped athermal
repulsive systems; i.e., we find that velocity profiles switch
from linear to nonlinear when u increases above u,., where
u, is set by the shear wave speed. We also find dilatancy
and breakdown of equipartition when u > u,.. We have
confirmed these results for harmonic spring interactions
at densities above and below random close packing, in 2D
and 3D, and over a range of temperatures below the glass
transition [17].

In this Letter we present results of MD simulations of
repulsive athermal systems undergoing boundary-driven
shear flow in 2D and 3D. We demonstrate that a critical
boundary velocity u,. exists that signals the onset of spatial
inhomogeneity at large u. When u > u,, the mean velocity
profiles become nonlinear, the system becomes dilated
near the moving wall and compressed near the stationary
wall, and the system possesses a nonuniform kinetic tem-
perature profile with higher temperature near the moving
wall. For underdamped systems, u, is nearly constant at
large ¢ but decreases strongly at lower ¢ until it vanishes
at ¢ .. Below ¢, the velocity profiles are nonlinear for all
u > 0. In the underdamped limit, u. is determined by the
shear wave speed u7. Initial studies indicate that these
results for underdamped systems also hold for repulsive
glasses. However, in the overdamped limit u,. is nearly
independent of ¢ over the studied range and scales linearly
with the damping coefficient.

We thank R. Behringer, A. Liu, and M. Robbins for
helpful comments. Financial support from NASA Grants
No. NAG3-2377 (N.X.) and No. NNC04GA98G (L.K.)
and Yale University (N.X., C.S.0.) is gratefully
acknowledged.

[1] D.M. Mueth, G.F. Debregeas, G.S. Karczmar, P.J. Eng,
S.R. Nagel, and H. M. Jaeger, Nature (London) 406, 385
(2000).

[2] W. Losert, L. Bocquet, T.C. Lubensky, and J.P. Gollub,
Phys. Rev. Lett. 85, 1428 (2000); D. Howell, R.P.
Behringer, and C. Veje, Phys. Rev. Lett. 82, 5241 (1999).

[3] X. Fu, D. A. Rigney, and M. L. Falk, J. Non-Cryst. Solids
317, 206 (2003).

[4] P.Coussot, J.S. Raynaud, F. Bertrand, P. Moucheront, J. P.
Guilbaud, H. T. Huynh, S. Jarny, and D. Lesueur, Phys.
Rev. Lett. 88, 218301 (2002).

[5] G. Debregeas, H. Tabuteau, and J.-M di Meglio, Phys.
Rev. Lett. 87, 178305 (2001).

[6] J. Lauridsen, G. Chanan, and M. Dennin, Phys. Rev. Lett.
93, 018303 (2004).

[7]1 J.-B. Salmon, A. Colin, S. Manneville, and F. Molino,
Phys. Rev. Lett. 90, 228303 (2003).

[8] P.A. Thompson and G. S. Grest, Phys. Rev. Lett. 67, 1751
(1991).

[9] S.Y. Liem, D. Brown, and J. H.R. Clarke, Phys. Rev. A
45, 3706 (1992).

[10] F. Varnik, L. Bocquet, J.-L. Barrat, and L. Berthier, Phys.
Rev. Lett. 90, 095702 (2003).

[11] J. Rottler and M. O. Robbins, Phys. Rev. E 68, 011507
(2003).

[12] Preliminary results on the systems considered here show
that instantaneous velocity profiles are indeed nonlinear
for u <ugy, but more work needs to be done to fully
characterize the mean profiles.

[13] C.S. O’Hern, S.A. Langer, A.J. Liu, and S.R. Nagel,
Phys. Rev. Lett. 88, 075507 (2002); C.S. O’Hern, L. E.
Silbert, A.J. Liu, and S. R. Nagel, Phys. Rev. E 68, 011306
(2003).

[14] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T.
Vetterling, Numerical Recipes in Fortran 77 (Cambridge
University Press, New York, 1986).

[15] D.J. Evans and G.P. Morriss, Statistical Mechanics
of Nonequilibrium Liquids (Academic Press, London,
1990).

[16] S. Luding, Phys. Rev. E 55, 4720 (1994).

[17] N. Xu and C.S. O’Hern (unpublished).

[18] D.J. Durian, Phys. Rev. E 55, 1739 (1997).

[19] uq also decreases strongly near random close packing, but
for all systems studied uy = u.. In particular, we find that
when u. = 0, ug = 0 also.

[20] J.P. Hansen and I. R. McDonald, Theory of Simple Liquids
(Academic Press, London, 1986).

[21] To simplify the calculations, we measured uy(¢) in low-
temperature, quiescent reference systems. This is justified
because the ¢ contribution to u7 is much larger than the
fluctuation contribution to u; for systems with ¢ above
random close packing and u ~ u..

016001-4



