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Effective Temperatures in Driven Systems: Static Versus Time-Dependent Relations
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Using simulations of glassy systems under steady-state shear, we compare effective temperatures
obtained from static linear response with those from time-dependent fluctuation-dissipation relations.
Although these two definitions are not expected to agree, we show that they yield the same answer over
two and a half decades of effective temperature. This suggests that a more complete conceptual
framework is necessary for effective temperatures in steady-state driven systems.
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Temperature is one of the fundamental variables in an
equilibrium system that determines not only the system’s
average properties, but also fluctuations around those
averages. Temperature also relates, via linear response,
fluctuations in a thermodynamic quantity to that quan-
tity’s response to a small perturbation in its conjugate
variable. When a system is far from equilibrium, tem-
perature is no longer well defined. Nevertheless, in many
cases fluctuations occur, though they are not thermal in
origin. An example is a steady-state driven system such as
a sheared material where shear introduces fluctuations
that are not described by a thermal bath temperature. Can
one define an appropriate ‘‘effective temperature’’ to
characterize these fluctuations?

For the idea of an effective temperature to be useful, a
clear prescription for defining it should exist and this
prescription should apply generally in different contexts.
Various groups have defined and measured different ef-
fective temperatures in systems far from equilibrium [1–
4]. We will show here that two prescriptions based on
linear response that have seemed to be fundamentally
incompatible do, surprisingly, give the same value for
the effective temperature. For this to occur, neither pre-
scription can work infallibly in all cases. Thus, our results
pose the conceptual question: under which conditions
should either linear response prescription be applied?

Linear response provides a large number of possible
definitions for the effective temperature, each based on a
different pair of conjugate variables, which all reduce to
the true temperature in thermal equilibrium. Effective
temperatures based on these different relations have
been used to model simulations of particulate systems
driven out of equilibrium by steady-state shear [5–7].
There are two ways in which such relations have been
implemented with significant success. One way uses static
linear response, which relates equal-time fluctuations to
the response at infinite times to yield an effective tem-
perature TI. The other way, argued to be more fundamen-
tal [8,9], measures the autocorrelation function and
relates it to the response as a function of time. In equi-
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librium, there is a strict proportionality between correla-
tion and response at all times and therefore a single well-
defined temperature, but in driven systems, the situation
is more subtle. The conceptual picture behind this is that
there can be two widely separated time scales in the
presence of shear. Degrees of freedom that decay on a
short-time scale are characterized by one effective tem-
perature, TS, while those that take a longer time to decay
are characterized by a different (higher) value, TL. It has
been predicted that TS is the bath temperature because
fast degrees of freedom decay before shear has any effect,
while TL, which can only be obtained from the long-time
behavior of correlation and response, corresponds to a
well-defined effective temperature characterizing struc-
tural rearrangements driven by shear [8].

As will be made clear below, an effective temperature
based on infinite time, or static linear response, TI, should
generally not agree with TL obtained from time-
dependent linear response in nonequilibrium systems.
Indeed, for the same pair of conjugate variables, we
always find in our simulations that TI � TL. However,
for a wide variety of simulations, we find that TI for one
conjugate pair can be equal to TL for a different pair.
Therefore, it appears that under different conditions, both
definitions of effective temperature must be equally valid.
The conceptual framework [4,10] that has been used to
argue for the validity of TL would imply that TI should
never be valid, in contradiction to our findings. That
scenario must therefore be incomplete.

In order to demonstrate these results, we have per-
formed numerical simulations of systems undergoing lin-
ear shear flow in both two and three spatial dimensions
(2D and 3D) under conditions of fixed volume, fixed
number of particles, and fixed shear rate. The systems
are composed of 50-50 bidisperse mixtures with diameter
ratio 1.4, which prevents crystallization and segregation.
The system is enclosed in a cubic simulation cell with
Lees-Edwards periodic boundary conditions to impose
shear in the x direction and a shear gradient in the y
direction. Particles interact via one of the following pair-
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FIG. 1. (a) R(�k��t� vs C(�k��t� in a 2D system with repulsive
harmonic interactions at TKE � 10�4, _� � 0:01, and � � 0:90
for N � 256 particles. ~k lies in the shear gradient direction;
k � 4:5, 9, and 11 are shown decreasing from top to bottom.
The solid lines are guides to the eye and have slopes equal to
�1=TL. (b) RP�t� vs CP�t� in the same system as (a). The solid
line was drawn for reference and has negative slope and
R-intercept 1=TL, where TL was obtained from (a). Note that
TI from (b) is equal to TL from (a). The results are in the linear
response regime, as shown by the open circles and dashed lines
in each panel, which are for two values of the perturbing field
that differ by a factor of 5.
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wise, finite-range, purely repulsive potentials:

Vhs�rij� �
�
2
�1� rij=�ij�

2

VH�rij� �
2�
5
�1� rij=�ij�

5=2

VRLJ�rij� �
�
72

���ij=rij�12 � 2��ij=rij�6 � 1�;

(1)

where � is the characteristic energy scale of the interac-
tion, �ij � ��i � �j�=2 is the average diameter of parti-
cles i and j, and rij is their separation. All potentials
(harmonic spring, Hertzian nonlinear spring, and repul-
sive Lennard-Jones) are zero when rij 	 �ij. Our results
have been obtained with packing fractions ranging from
� � �0:70; 0:84� in 3D and� � �0:85; 1:20� in 2D, which
are all above random close-packing [11]. We varied the
number of particles in the range N � �256; 1024� and
found no appreciable finite-size effects for the results
reported here. The units of length, energy, and time are
�, �, and �

����������
m=�

p
, respectively, where m is the particle

mass and � is the small-particle diameter.
We have studied both thermal and athermal (or dissi-

pative) systems to show that our results are not specific to
any particular dynamics. Thermal systems under shear
can be described by the Sllod equations of motion for the
position ~ri and velocity fluctuation ~vi of each particle
around the average linear velocity profile [12]:

d~ri
dt

� ~vi � _�yix̂;
d ~vi
dt

� ~Fri =m� _�vyix̂� � ~vi; (2)

where ~Fri � �
P
jdV�rij�=drijr̂ij is the repulsive force on

particle i due to neighboring particles j, _� is the shear
rate, and� is chosen to fix the kinetic energy per degree of
freedom, TKE, associated with velocity fluctuations. We
set TKE to be below the glass transition temperature of the
unsheared system.

Athermal dissipative systems can be described by [13]:

m
d2 ~ri
dt2

� ~Fri � b
X

j

� ~vti � ~vtj�; (3)

where ~vti is the total velocity (including shear) of particle
i, b > 0 is the damping coefficient, and the sum over j
only includes particles that overlap particle i. At finite
shear rate, these systems reach a steady state where the
power put in by the shear flow balances the power dis-
sipated. In this study, we focused on underdamped dis-
sipative dynamics and therefore fixed the dimensionless
damping coefficient b
 � b�=

�������
�m

p
� 1.

We now describe how to calculate the effective tem-
perature from a set of conjugate variables and then show
explicitly the incompatibility of the static and the time-
dependent definitions for the same conjugate pair of
variables. Since we are concerned with systems in
165702-2
steady-state shear, we assume a final steady state in which
averaged quantities become time independent. Consider
an observable, A�t�, that fluctuates in time t, such as the
number density or the total pressure of the system. Then
one can define the autocorrelation function:

~CA�t� � hA�t�A�0�i � hAi2; (4)

where hAi represents an average of A over time and
configurations. If B is the thermodynamic field conjugate
to A, then one can also define an integrated response
function which measures the response to a small constant
perturbation, &B, applied from time t � 0 onward:

~RA�t� �
hA�t�i � hA�0�i

&B
: (5)

If we now introduce the rescaled variables

RA�t� �
~RA�t�

~Ca�t � 0�
and CA�t� �

~CA�t�
~CA�t � 0�

; (6)

the fluctuation-dissipation relation states that
165702-2
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FIG. 2. (a) R(�k��t� vs C(�k��t� in a 2D sheared, athermal
system with repulsive harmonic interactions at � � 0:90 and
_� � 0:01. ~k lies in the shear gradient direction and k � 4:5 and

9 are shown with k decreasing from top to bottom. The solid
lines have slope equal to �1=TL. (b) RP�t� vs CP�t� in the same
system as (a). The solid straight line has negative slope and
R-intercept 1=TL, where TL was obtained from (a).
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RA�t� �
1

T
�1� CA�t��: (7)

This implies that if RA is plotted parametrically against
CA, the result should be a straight line with slope �1=T
for an equilibrium system. Moreover, the infinite-time
limit, which is the intercept of such a plot on the R
axis, has the value 1=T. According to Eqs. (6) and (7),
the intercept satisfies

~RA�t � 1� � ~CA�t � 0�=T: (8)

Thus, the intercept, which defines a temperature TI, cor-
responds to the static linear response relation whereby the
infinite-time response, ~RA�t � 1� [Eq. (5)], is related to
the equal-time correlation function, ~CA�t � 0� [Eq. (4)].

As indicated earlier, Kurchan [8] has predicted that for
driven steady-state systems, such a parametric plot has
two regimes [5,8]. Berthier and Barrat have conducted
simulations of sheared Lennard-Jones glasses and shown
that at short times (CA close to one and RA close to zero),
the slope of the line, �1=TS, defines a temperature char-
acterizing the fast modes in the system and corresponds
to the bath temperature, TKE. At long times, the slope,
�1=TL, is a good measure of the effective temperature
produced by shear for the slow modes. We show a similar
plot for a 2D sheared thermal system in Fig. 1(a) using as
the variable the Fourier component of the number density
of the large particles at various values of the wave vector
~k: (� ~k; t� �

PN=2
i�1 e

i ~k� ~ri�t�. For this variable, we calculate
the incoherent part of the scattering function for the large
particles, C(�k��t� [5]. In Fig. 1(a), there is a well-defined
slope at short times and a smaller slope at long times (i.e.,
at smaller values of CA�t�). It is quite obvious that the
long-time slopes are all the same so that there is a com-
mon effective temperature that describes the fluctuation
and response for all of these variables. These results are
consistent with those found by Berthier and Barrat [5] for
a three-dimensional system. Note that for each k, the
value at which each of these curves intercepts the R(�k�
axis cannot have the value 1=TL. This could only be the
case if TS � TL (as in equilibrium), or if the regime
corresponding to TS shrinks to zero [14]. If the curve is
not a straight line, then TI (determined from the inter-
cept) must be different from either TS or TL.

In Fig. 1(b), we show the parametric plot for the
identical system as in Fig. 1(a) but for a different variable,
namely, the total pressure, P. We calculate the pressure
P � P��=d in d spatial dimensions, using the following
expression for the pressure tensor

LdP�, �
XN

i�1

mv�iv,i �
XN�1

i�1

XN

j�i�1

r�ijF
r
,ij; (9)

where �, , � x, y, or z and L is the edge length of the
simulation box. The shape of this curve is very different
from those shown in Fig. 1(a). In this case, the response
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rises rapidly at short times and then turns over and
becomes horizontal at long times [4,15]. The striking
result is that, although this curve is manifestly different
from those shown earlier, it has an intercept temperature,
TI, with the same value, TI � TL, obtained from the late-
time slopes of the curves in Fig. 1(a).

We stress here that this is not a coincidence. In Fig. 2,
we show for an athermal system the response versus
correlation plots for the same sets of variables as shown
for thermal systems in Fig. 1. Again we see that TI ob-
tained from P has the same value as TL obtained from
(�k�. To indicate the full extent of agreement, we plot in
Fig. 3 the ratio TL=TI versus log10TL for all systems
studied. This figure shows that within error TL � TI
over two and half decades of effective temperature.
These data are collected from thermal and athermal
simulations at different values of the shear rate and
density in 2D and 3D for systems with different particle
interactions. For the thermal simulations, we also varied
the bath temperature.

We have shown that both static linear response and
time-dependent fluctuation-dissipation relations can yield
consistent values of effective temperature. However, it is
unclear when one should use static relations and when one
should use time-dependent ones. Pressure is not the only
observable for which the static relation is appropriate.
Previously, we showed that static relations yield a con-
165702-3
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FIG. 3. TL=TI vs TL, where TI is obtained from the
R-intercept of integrated response (R) vs correlation (C) for
pressure and TL is obtained from the long-time slope of R vs C
for (�k�. The largest error comes from estimating the long-time
slope of R vs C for (�k�.
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sistent effective temperature for shear stress and potential
energy as well [7]. It is also not true that one should
invariably use the static relation for quantities involving
pressure. We have calculated response vs correlation for
pressure at different values of ~k in 2D sheared systems. At
large k, TL yields the correct effective temperature
whereas at k � 0, TI does.

It is not true that the effective temperature for all
k � 0 observables should be given by static linear re-
sponse. While static linear response appears appropriate
for k � 0 pressure, energy, and shear stress, we find other
examples for which this does not hold, including Pzz [5]
and the deviatoric pressure Pdev � �2P11 � P22 � P33�=3
where 1; 2; 3 � x; y; z [16].We find that theR�C� curves for
each of these k � 0 variables are not flat as in Fig. 1(b),
but have nonzero long-time slopes. However, the corre-
sponding effective temperatures can differ by factors of
5–10 from those in Fig. 1(a) even when other effective
temperatures agree.

There are regimes where the idea of an effective tem-
perature is valid and others where it breaks down [17]. For
example, at high densities (e.g., � � 1:1, typical of
liquids) and high bath temperatures (TKE > 0:1Tg), we
find that the various effective temperatures are the same.
However, these begin to deviate as TKE is lowered.
Previous studies [8,9] have suggested that the concept
of effective temperature should be valid when there is a
clear separation between the short-time regime and the
long-time, shear-rate-dependent regime. This criterion
cannot be sufficient because as TKE is lowered, the sepa-
ration between these two time scales does not decrease.

We have shown that TI for the zero-wave vector pres-
sure is equal to TL for (�k� over a range of two and a half
decades in effective temperature. This remarkable result
suggests that static as well as time-dependent linear
165702-4
response relations can be used to define a consistent
effective temperature, in contradiction to expectations
based on spin models subjected to nonconserved fields
[8,9]. These results also leave us with a puzzle: when
should one use static linear response and when should
one use a time-dependent relation? For a given pair of
conjugate variables, there is no obvious criterion for
which of these two kinds of relations should be used.

We thank L. Cugliandolo, D. Durian, J. Kurchan,
M. Robbins, P. Sollich, and N. Xu for useful comments.
Grant support from NSF-DMR-0087349 (CSO,AJL),
DE-FG02-03ER46087 (AJL), NSF-DMR-0089081
(CSO,SRN), and DE-FG02-03ER46088 (SRN) is grate-
fully acknowledged.
[1] J. Casas-Vazquez and D. Jou, Rep. Prog. Phys. 66, 1937
(2003).

[2] A. Barrat, J. Kurchan, V. Loreto, and M. Sellitto, Phys.
Rev. E 63, 051301 (2001).

[3] G. P. Morriss and L. Rondoni, Phys. Rev. E 59, R5
(1999); O. G. Jepps, G. Ayton, and D. J. Evans, Phys.
Rev. E 62, 4757 (2000).

[4] L. F. Cugliandolo, J. Kurchan, and L. Peliti, Phys. Rev. E
55, 3898 (1997).

[5] J.-L. Barrat and L. Berthier, Phys. Rev. E 63, 012503
(2001); L. Berthier and J.-L. Barrat, Phys. Rev. Lett. 89,
095702 (2002); J. Chem. Phys. 116, 6228 (2002).

[6] H. A. Makse and J. Kurchan, Nature (London) 415, 614
(2002).

[7] I. K. Ono, C. S. O’Hern, D. J. Durian, S. A. Langer, A. J.
Liu, and S. R. Nagel, Phys. Rev. Lett. 89, 095703 (2002).

[8] J. Kurchan, J. Phys. Condens. Matter 12, 6611 (2000);
J. Kurchan, in Jamming and Rheology, edited by A. J.
Liu and S. R. Nagel (Taylor and Francis, London, 2001).

[9] L. Berthier, J.-L. Barrat, and J. Kurchan, Phys. Rev. E 61,
5464 (2000).

[10] L. F. Cugliandolo and J. Kurchan, Phys. Rev. Lett. 71, 173
(1993).

[11] C. S. O’Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel,
Phys. Rev. E 68, 011306 (2003).

[12] D. J. Evans and G. P. Morriss, Statistical Mechanics of
Nonequilibrium Liquids (Academic Press, London,
1990).

[13] S. Luding, Phys. Rev. E 55, 4720 (1997).
[14] P. Mayer, L. Berthier, J. P. Garrahan, and P. Sollich, Phys.

Rev. E 68, 016116 (2003).
[15] Similarly-shaped response vs correlation plots have been

observed in coarsening systems; A. Barrat, Phys. Rev. E
57, 3629 (1998). In such systems, it has been speculated
that the intercept may yield a sensible temperature; S. M.
Fielding and P. Sollich, Phys. Rev. E 67, 011101 (2003).

[16] G. Parisi, Philos. Mag. B 77, 257 (1998).
[17] C. S. O’Hern, A. J. Liu, and S. R. Nagel (to be published).
165702-4


