Undergraduate Study

Professor Corey S. O'Hern
Director of Undergraduate Studies

Mechanical engineering is among the most diversified of the traditional engineering disciplines. The mechanical engineer builds machines to extend our physical and mental capabilities and to convert traditional and novel energy sources into useful forms.

The role of the mechanical engineer has changed dramatically over the past few decades with the extensive use of high-performance computers (in such areas as computational fluid dynamics, materials design, control, and manufacturing), the interfacing of microelectromechanical systems and actuators via microprocessors to build high-precision sensors and devices, and the advent of advanced materials (e.g., composites, shape-memory alloys, ceramics, and superconductors) for new applications (e.g., coatings, biomaterials, and computer storage). These areas offer mechanical engineering students special opportunities for creativity, demanding that they learn not only in depth but also in breadth. Demands for increased energy efficiency and reduced environmental impact—as might be realized, for example, in novel gas turbine or electric hybrid vehicles—require that students understand the fundamentals of mechanics, thermodynamics, fluid mechanics, combustion, and materials science. In all these tasks, the utmost consideration of the modern mechanical engineer is improving the quality of human life. The engineer must also be constantly aware both of the finiteness of Earth's resources and its environment and of the burden that engineering places on them.

The educational mission of the Department of Mechanical Engineering and Materials Science is to provide an excellent education that will prepare students to become members of the next generation of mechanical engineers. To implement this mission, the department adheres to the following set of educational objectives: to provide a balanced technical and nontechnical education to enable graduates to enter highly selective graduate schools and/or to pursue technical careers in industry or government laboratories; to enable graduates to improve and adapt their skills to accommodate rapid technological changes; to prepare graduates to communicate effectively and to understand the ethical responsibilities and impact on society of their profession. To achieve these objectives, the following fundamental educational goals have been established for the Department of Mechanical Engineering and Materials Science: to provide a comprehensive introduction to basic science and mathematics, which form the foundation of mechanical engineering; to provide thorough training in methods of analytical, experimental, and data analysis, including problem formulation; to provide instruction in the fundamentals of the design process, including project innovation, synthesis, and management, both individually and in a team setting; to provide both a technical and a nontechnical program of study in which oral and written communication skills are developed; to instill in students an understanding of their professional and ethical responsibilities, which affect society and their profession.

At Yale, three mechanical engineering programs are offered: a B.S. degree program with a major in Mechanical Engineering, a B.S. degree program with a major in Engineering Sciences (Mechanical), and a B.A. degree program with a major in Engineering Sciences (Mechanical). Prospective majors in both B.S. programs are advised to complete introductory physics and mathematics through calculus (MATH 115) by the end of their freshman year.

B.S. degree program in Mechanical Engineering*: This is the most technically intensive mechanical engineering degree program and is accredited by the Engineering Accreditation Commission of ABET. This program is appropriate for students who plan careers as practicing engineers in industry, consulting firms, or government, as well as for students who are considering a career in research and plan to pursue an advanced degree in engineering or related disciplines.

Outcomes and Program Educational Objectives (PEOs) for Mechanical Engineering
Upon graduation, Yale's Mechanical Engineering students are expected to achieve "Student Outcomes" as defined by ABET and the program. The Mechanical Engineering major produces graduates who demonstrate:

  • an ability to apply knowledge of mathematics, science, and engineering
  • an ability to design and conduct experiments, as well as to analyze and interpret data
  • an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
  • an ability to function on multidisciplinary teams
  • an ability to identify, formulate, and solve engineering problems
  • an understanding of professional and ethical responsibility
  • an ability to communicate effectively
  • the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
  • a recognition of the need for, and an ability to engage in life-long learning
  • a knowledge of contemporary issues
  • an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Yale and ABET also look ahead, several years beyond graduation. Program Educational Objectives provide the expectations for graduates early in their career. The educational mission of the Mechanical Engineering Program at Yale University is to provide an excellent mechanical engineering curriculum with numerous design experiences, within one of the finest liberal arts universities in the nation, so that our students are prepared to become the next generation of mechanical engineers. Our students will possess the necessary knowledge and skill sets to pursue graduate studies in Mechanical Engineering and related disciplines, job opportunities in industry and government, and entrepreneurial ventures.

Some students find less intensive engineering programs better meet their needs when considering a joint major or future plan. These non-ABET programs include the B.S. in Engineering Sciences (Mechanical) and the B.A. in Engineering Sciences (Mechanical) designed for students who may be planning careers in business, law, medicine, journalism, or politics, but want to supplement their liberal arts studies to include an understanding of the impact that science and technology can have on society.

B.S. degree program in Engineering Sciences (Mechanical): This degree program is suitable for students who wish to gain significant expertise within Mechanical Engineering while combining their engineering studies with related disciplines. For example, a number of students have taken courses in architecture while pursuing a program in Mechanical Engineering that emphasizes structural mechanics; similarly, a student with an interest in computer graphics might combine engineering courses in computer-aided design with programming courses from the Department of Computer Science. The major requires twelve approved term courses in Engineering, which can cover a broad array of topics within the subject, provided that they contribute to a coherent program. Students should consult with the Director of Undergraduate Studies at the beginning of their sophomore year.

B.A. degree program in Engineering Sciences (Mechanical): In a society with increasing levels of technical sophistication, a truly well-rounded individual must have some background in science and technology. The B.A. program is designed for students who may be planning careers in business, law, medicine, journalism, or politics, but need to understand the impact that science and technology can have on society at large. An understanding of engineering methods and practices, combined with a traditional liberal arts education, provides a strong background for a variety of careers. The program is well-suited for students who wish to fulfill the requirements of two majors.

A student's undergraduate engineering program can include one or more special project courses (MENG 471, 472), in which the student pursues a particular research interest through design-oriented projects and experimental investigations. Projects may be initiated by the student, may be performed in a team, or may be derived from the ideas of faculty members who place undergraduates in their ongoing research projects. All interested students should contact the director of undergraduate studies for more information on special project courses.

All interested students should contact the Director of Undergraduate Studies, preferably no later than the beginning of the sophomore year.

* Accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

For detailed curriculum information, visit Mechanical Engineering & Materials Science Undergraduate Curriculum Information

For a detailed listing of projects from MENG 472 in 2016, visit the MENG 472 projects page

For a detailed listing of projects from MENG 471/473 in 2016, visit the MENG 471/473 projects page

For a detailed listing of projects from MENG 472/474 in 2017, visit the MENG 472/474 projects page